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ABSTRACT

This paper addresses several aspects of the analysis of
uncertainty in the output of computer models arising from
uncertainty in inputs (parameters). Uncertainty of this
type, which is separate and distinct from the randomness
of a stochastic model, most often arises when input values
are guesstimates, or when they are estimated from data, or
when the input parameters do not actually correspond to
observable quantities, e.g., in lumped-parameter models.
Uncertainty in the output is quantified in its probability
distribution, which results from treating the inputs as
random variables. The assessment of which inputs are
important with respect to uncertainty is done relative to
the probability distribution of the output.

1 INTRODUCTION

Uncertainty in a model output—how big it is and what
it is attributable to—is not a new issue. The accuracy
of models has always been a concern, and things are no
different today with computationally intensive models on
computers. Three things make the analysis of computer
models usually more difficult than that of other models.
First, the nature of the relationship between the output
and the inputs is often very complex. Second, there can
be very many inputs for which the cost of data collection
is high. Finally, when the output is something like a fore-
cast, comparison between predicted and calculated values
is essentially impossible. Despite these difficulties, ques-
tions like “What is the uncertainty in the calculation?”
continue to be heard both in scientific circles and in po-
litical ones, where the cost of decisions resting on model
calculations can be high.

Although there are several useful questions one
might ask about computer models, there seems to be a
tendency to use the same kind of method to answer many
of them. It is unlikely, however, that any single method
of analysis exists that answers all questions in model
evaluation. Moreover, an examination of typical ques-
tions would likely suggest that different kinds of methods

are not only desirable but necessary. To find appropri-
ate methods, one needs precise statements of objectives.
Unfortunately for many investigators, what begins as an
intuitive concept, like uncertainty or sensitivity, can eas-
ily end up as an imprecisely stated and misleading ques-
tion that suggests an inappropriate method of answering
it. This paper tries to address that problem by providing
a framework within which questions of uncertainty and
importance are posed.

This discussion will be limited to particular consid-
erations from the diversity of issues comprising model
analysis. First of all, this paper is not an empirical com-
parison or evaluation of methods currently used in the
analysis of computer models. Examples of such stud-
ies are Saltelli and Homma (1992), Saltelli and Marivoet
(1990), Iman and Helton (1988) and Downing, Gardner
and Hoffman (1985). Secondly, we will consider ques-
tions dealing with the values of the output and the input,
and not, specifically, with the form or structure of their
relationship. In particular, we will focus on the issue of
uncertainty in the calculated value due to uncertainty in
input values. To provide a setting, we will introduce cur-
rent methods from two different perspectives related to
model analysis. With that background, we will develop
a new and useful paradigm for analysis and methods de-
velopment for issues related to uncertainty in the output
value.

2 TWO PERSPECTIVES

Model analysis can be thought of as a collection of
questions asked about output and input values. Although
a simplification, it is useful to distinguish the questions
as arising from one of two perspectives. This idea,
previously discussed by McKay (1978, 1988), allows
the introduction of a new way of viewing importance
of inputs with regards to uncertainty in the output.

The first perspective is from the space of input
values, and tends to focus at one point, like a nominal
input value. Because of this, quantities of interest, like
a derivative, can seem to be treated as constant over the
input space, so that the focal point really does not matter.



This perspective is termed a local perspective relative to
the input space.

The second perspective is from the space of output
values. As such, its focus is not constrained a priori in
the input space, so that it is termed a global perspective
relative to the input space.

The reason for making the distinction between local
and global perspectives has to do with the problem of
identifying important inputs. Although “importance” has
not yet been defined, it seems reasonable to suppose that
qualities that make an input important locally are not
necessarily those that make it important globally, and vice
versa. Therefore, it is necessary to realize the perspective
of interest.

2.1 A Local Perspective

Let us suppose that there is some value of the inputs,
x0, worth attention and that we are interested in changes
in the output Y for small perturbations in inputs X

about x0. A common question in this situation concerns
propagation of error, characterized by the derivatives of
Y with respect to the components of X. Similarly,
one might be interested in the direction, not necessarily
parallel to a coordinate axis, in which Y changes most
rapidly, or in the change in Y in an arbitrary direction.
Issues like these lead one to the concept of “critical” or
“important” variable (or direction) as being one(s) that
most accounts for change in Y . For propagation of error,
it seems to make sense to talk about each component of X
as being important or not important. When the direction
becomes arbitrary, it seems natural to talk about subsets
of the components, rather than about individual ones.

2.2 A Global Perspective

Suppose that interest lies in the event that Y , the output or
prediction, exceeds some specified value. Questions that
could arise in this case might be concerned with associ-
ating particular inputs (components of X) or segments of
ranges with that event. Objectives of study for this ques-
tion might be related to controlling the event, or with
reducing its probability of occurrence in the real world
by adjusting the values of some of the inputs. If costs
are associated with the inputs, minimum cost solutions
might be sought.

Clearly, both perspectives have a place in model
analysis. In the local perspective, interest in X is re-
stricted to a (small) neighborhood of a single point, and
the derivative seems to come into play. In the global per-
spective, interest is in values of Y , which might translate
into a subset of, or possibly just a boundary in, the in-
put space. In this case, the role of the derivative is less
clear. What tends to blur the distinction between the two

perspectives is the use of the derivative to answer ques-
tions of a global nature. The practice is defensible if the
model is essentially linear, meaning that the derivative
does not change substantially with x0; or that, to first
order approximation, an “average” derivative is sufficient
to characterize the model, again meaning that the model
is essentially linear. In what follows, a global approach
is taken and the role of the derivative is not paramount.

3 UNCERTAINTY ANALYSIS

We are interested in the type of uncertainty in the output
of a model that can be characterized as being due to
the values used for the inputs. A related uncertainty,
due to the structure or form of the model itself, will not
be addressed explicitly. Neither will we be concerned
with uncertainty due to errors in implementation of the
model on a computer. On the other hand, it is certainly
acceptable that the output might have the randomness of
a stochastic process. In that case, we will think of the
output of the model as being the cumulative distribution
function of the observable output value. With this in
mind, the purpose of uncertainty analysis is to quantify
the variability in the output of a computer model due to
variability in the values of the inputs.

We proceed by first describing the variability in the
inputs with probability functions. Commonly, input val-
ues are uncertain because they are guesstimates, or when
they are estimated from data, or when the input parame-
ters do not actually correspond to observable quantities,
e.g., in lumped-parameter models. Treating the inputs as
random variables introduces another layer of complica-
tion, namely, that of assigning to them probability distri-
butions. Everything that follows will depend on the dis-
tributions used for the inputs, which means uncertainty in
the input probability distributions leads to corresponding
uncertainty in the analysis. As an alternative to quantify-
ing that uncertainty, some kind of variational study used
to measure the effect of the distributional assumptions is
a possibility.

When the inputs are treated as random variables, the
output becomes a random variable because it is a trans-
formation of the inputs. Uncertainty in the output, then,
is characterized by its probability distribution. Therefore,
when we consider questions related to uncertainty in the
output, Y , we will look to the probability distribution of
Y for answers.

We assume that interest in uncertainty in Y can be
summed up by in these two questions: “How big is it?”
and “Can it be attributed to particular inputs?” An obvious
motivation for these questions is a desire to minimize
uncertainty in the model output, which might be achieved
by reducing the variance of some of the inputs. Thus, an
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important problem might be how to find a minimum-cost
reduction in the variance of Y by reducing the variances
of components of X. This problem presupposes, of
course, that reduction in the variance of the inputs makes
sense.

4 MEASURING UNCERTAINTY

We look to the probability distribution function of the
output Y for information about uncertainty. Questions
like “What is the uncertainty in Y ?” might be answered
using a probability interval constructed with quantiles of
the distribution of Y . For example, the 0.05 and the
0.95 quantiles define an interval covering 90% of the
probability content of the distribution of Y . Alternatively,
the difference in the two quantiles provides a range of
90% coverage. The use of probability intervals as a
measure of uncertainty has an advantage over the use
of the variance of the distribution in that the variance
may not directly relate to coverage. This is not the
case, though, in the familiar normal distribution where
quantiles depend in a straightforward manner on the mean
and variance of the distribution.

Ideally, the probability distribution of Y would be
known once the distribution of X is specified. Realis-
tically, the distribution will have to be estimated, most
likely, with a sample of runs using the model which re-
lates Y to X. Simple random sampling (SRS) could be
used for this purpose, as well as could other sampling
schemes. Latin hypercube sampling (LHS), introduced
by McKay, Conover and Beckman (1979), is a preferred
alternative to SRS when the output is a monotone function
of the inputs. Additionally, Stein (1987) shows that LHS
yields an asymptotic variance smaller than that for SRS.
Besides being used to estimate the probability distribu-
tion, sample values could be used to construct a tolerance
interval, which covers at least a specified portion of the
probability distribution of Y with a specified confidence
level. (For a short discussion of probability interval and
tolerance interval, see Tietjen (1986, p. 36).) Generally,
a tolerance interval, which corresponds to a probability
interval when the probability distribution is estimated, is
based on a random sample. If usual methods for con-
structing tolerance intervals based on nonparametric tech-
niques or on the normal distribution—e.g., in Bowker and
Lieberman (1972, pp. 309-316) where they are called
tolerance limits—are applied to the LHS, however, the
results are only approximate.

In the remainder of this paper, we will be concerned
only with probability distributions and their moments.
Furthermore, we will assume that sample sizes are suffi-
ciently large to rule out concern about sampling error in
all regions of interest in estimated distribution functions.

Although it has been suggested that a probability in-
terval is a more appropriate measure of uncertainty than
is variance, the use of variance to “partition” or allocate
uncertainty to components of X cannot be overlooked.
In fact, three categories of techniques for the determi-
nation of “important” inputs, relative to uncertainty in
the output, look primarily at the variance of Y . We will
review these techniques using variance as the measure
of uncertainty before introducing the new paradigm for
uncertainty analysis.

5 PARTITIONING UNCERTAINTY

Statements like “20% of the uncertainty in Y is due to
X1” have a nice sound, but may be very misleading with-
out explanation. If we suppose that uncertainty in Y is
measured by its variance, then a reasonable interpreta-
tion of the statement is that the variance of Y can be
written, approximately, as the sum of two functions, one
depending on the distribution of X1 alone and the other
independent of the distribution of X1. This picture cap-
tures a motivation for, but does not limit, the classes of
techniques to be discussed.

5.1 Linear Propagation of Error

When we are using variance to measure uncertainty,
the problem of partitioning uncertainty reduces to that
of finding suitable decompositions for the variance of
Y . The simplest of these is the usual propagation of
error method in which Y is expressed as a Taylor series
in the inputs X about some point x0. To first order
approximation, the variance of Y is expressed as a linear
combination of the variances of the components of X by
choosing x0 to be �, the mean value of X.

Y (X) = Y (x0) +
X

i

@Y (x0)

@Xi

(Xi � x0i) + � � �

V [Y ] '
X

i

�
@Y (�)

@Xi

�2
V [Xi]

When the derivatives of Y are not determined numeri-
cally, but estimated by the coefficients from a linear re-
gression of Y on X, one seems to be making a stronger
assumption about the linear dependence of Y on X.
However, it is generally unknown whether the value of
the actual derivative of Y or the value of an average slope
is preferred in the variance approximation. In a technique
that could be related to linear propagation of error, Wong
and Rabitz (1991) look at the principal components of
the partial derivative matrix.

Although not precisely a variance decomposition,
correlation coefficients have been used to indicate rel-
ative importance of the inputs. They are mentioned here
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because they are closely related to linear regression coef-
ficients. In a similar way, rank transformed values of Y
and X have been used for rank correlation and rank re-
gression by McKay, Conover and Whiteman (1976), and
Iman, Helton and Campbell (1981a, 1981b). Also,
Oblow (1978) and Oblow, Pin and Wright (1986) use a
technique whereby the capability of calculating deriva-
tives into the model is added using a precompiler called
GRESS.

5.2 General Analytical Approximation

The natural extension of linear propagation of error, to
add more terms in the Taylor series, makes it difficult to
interpret variance decomposition component-wise for X.
That is, the introduction of cross-product terms brings
cross-moments into the variance approximation, which
makes the approximation no longer separable with respect
to the inputs. Nevertheless, one may feel it necessary to
use higher order terms in variance approximation. The
adequacy of the approximation to Y might be used as
a guide to the adequacy of the variance approximation.
However, there is no particular reason to think that one
implies the other.

Similarly, the linear approximation of Y used in the
regression can be generalized to an arbitrary analytical
approximation from which, in theory, the variance of Y
can be derived either mathematically or through simula-
tion. Alternatively, one can use a method proposed by
Sacks, Welch, Mitchell and Wynn (1989), which looks at
the model as a realization of a stochastic process. The
difficulties in interpretation and assessing adequacy just
mentioned for the higher order Taylor series expansion
apply here, too.

5.3 Sampling Methods

This final category of partitioning techniques relies on a
sample (usually, some type of random sample) of values
of Y whose variability can be partitioned according to the
inputs without an apparent assumed functional relation
between Y and X. In this category is a Fourier method
of Cukier, Levine and Shuler (1978). The procedure
says that values of each component of X are to be
sampled in a periodic fashion, with different periods for
each component. The variability (sum of squares) of
the resulting values of Y can be written as a sum of
terms corresponding to the different periods, and thus
associated with the different components. It is unclear
how this relates to linear propagation of error, but it
may be just another way to estimate the same quantities.
The original Fourier method applies to continuous inputs.
It is extended to binary variables by Pierce and Cukier
(1981). Again, the relation to linear propagation of
error is unclear. Another procedure suggested by Morris

(1991) examines a probability distribution of the partial
derivatives of the output arising from particular sampling
designs.

Finally, I mention a partition of variance described
by Cox (1982). Though not actually a sampling method,
the elements of the decomposition are likely to estimated
from sampled data, in practice. The identity used in-
volves the variances of conditional expectations of the
output given subsets of the inputs. As with general an-
alytical approximation, it is not possible to isolate terms
for all the individual components of X.

6 MATHEMATICAL FRAMEWORK

The uncertainty in the output that we focus on is that
attributable to the inputs. Specifically, we are ignoring
the uncertainty in calculations due to the possibility that
the structure of the model might be deficient. We let
Y denote the calculated output, which depends on the
input vector, X, of length p through the computer model,
h(•). Because proper values of the components of X may
be unknown or imprecisely known, or because they can
only be described stochastically, it seems reasonable to
treat X as a random variable and to describe uncertainty
about X with a probability function. Uncertainty in the
calculation Y is captured by its own probability function,
which is what we will study. In summary, then,

Y = h(X)

X � fx(x) ; x�R
p

Y � fy(y) :

For now, we will think of fx as known, although in
practice, knowledge about it is at best incomplete.

We look to the probability distribution, fy, for an-
swers to the question “What is the uncertainty in Y ?”
That is to say, we can use the quantiles of the distribu-
tion of Y to construct probability intervals. Alternatively,
one might use the variance of Y to quantify uncertainty.
In either case, under the assumption that fy can be ad-
equately estimated, questions answerable with quantiles
or moments are covered. However, as has already been
mentioned, the issue of how well fx is known will surely
have to be addressed in practice.

We relate questions of importance of inputs to the
probability distribution of Y . That is, we will consider
questions like “Which variables really contribute to (or
affect) the probability distribution of the output?” What
it means to be important is defined in somewhat of a
backwards way as being the complement of unimportant.
We say that a subset of inputs is unimportant if the
conditional distribution of the output given the subset is
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essentially independent of the values of the inputs in the
subset. We now examine these ideas in more detail.

Suppose that the vector X of inputs is partitioned
into X1 and X2. Corresponding to the partition, we write

Y = h(X)

= h(X1; X2) :

Furthermore, we assume that X1 and X2 are stochasti-
cally independent, meaning that

Xi � fi(xi) ; i = 1; 2

fx(x) = f1(x1)f2(x2) :

We address the question of the unimportance of X2 by
looking at

fyjx2 = distribution Y givenX2 = x2 :

as compared to fy . We say that X2 is unimportant if fy
and fyjx2 are not substantially different for all values of
X2 of interest. Similarly, we say that X1 contains all
the important inputs if X2 is unimportant. Of course, the
actual way to compare fy and fyjx2 must be determined.

We use the term “screening” to mean an initial
process of separating inputs into X1, potentially impor-
tant ones, and X2, potentially unimportant ones. In the
next section, a simple method of partitioning the inputs,
following McKay, Beckman, Moore and Pickard (1992),
will be discussed.

7 A SIMPLE SCREENING HEURISTIC

We now describe a simple, two-step screening process.
The first step is to partition X into a set of “important”
components, X1, and a set of “unimportant” components,
X2. The second step is a partial validation to estimate
how the components in X2 actually change fyjx2 , to be
used to decide if X2 is really unimportant.

7.1 Partitioning the Input Set

We say that X2, a subset of X, is (completely) unim-
portant when the marginal distribution of Y , equals the
conditional distribution of Y given X2.

fy = fyjx2 for all values of X2 (1)

A way to get an idea of how closely the equality in
(1) holds is through the variance expression (2) which
expresses the marginal variance of fy in terms of the

conditional mean and variance of fyjx2 . The variance of
Y can be written as

V [Y ] = E[V [Y j X2]] + V [E[Y j X2]] : (2)

Equality of the marginal and conditional distributions in
(1) implies that the conditional mean and variance are
equal to their marginal counterparts for all values of X2.
Specifically, the variance (over X2) of the conditional
expectation in (2) is zero. It is unlikely, of course, that
any (realistic set) of the inputs is completely unimportant.
Therefore, the equality between marginal and conditional
quantities will be true only in approximation, with the
degree of approximation linked to the level of acceptance
of the difference between the marginal and conditional
distributions of the output, Y .

By inference, if X1, the complement to X2, is (com-
pletely, singly) important, the conditional variance of Y
given X1 is zero, and the variance of the conditional ex-
pectation of Y given X1 is the marginal variance. As
before, these relations usually hold only in approxima-
tion. Nevertheless, a comparison of terms in (2) will
offer a way to look at the degree of importance.

The variance decomposition in (2) suggests a related
identity from a one-way analysis of variance, in which
the total sum of squares is written as the sum of two
components, a “between level” component and a “within
level” component. It will be the analysis of variance
approach we will use to suggest which components of X
belong in X1 and which in X2. What we will do is to
use r “replicate” Latin hypercube samples of size k. The
same k values of each component of X will appear in
each replicate but the matching within each one will be
done independently. The k values will correspond to the
k levels in the sum of squares decomposition.

In an LHS as introduced by McKay, Conover and
Beckman (1979), when the inputs are continuous and
stochastically independent, the range of each component
of X is divided into k intervals of equal probability
content. Simple modifications can be made to handle
discrete inputs (McKay 1988) and dependence (McKay
1988, Stein 1987, Iman and Conover 1982). For a true
LHS, a value is selected from each interval according
to the conditional distribution of the component on the
interval. For this application, it will be sufficient to use
the probability midpoint of the interval as the value. The
k values for each input are matched (paired) at random
to form k input vectors. For the replicates needed in this
screening heuristic, r independent matchings of the same
values are used to produce the n = k � r input vectors
in total.

A design matrix, M , for an LHS is given in (3).
Each column contains a random permutation of the k

values for an input. Each row of the matrix corresponds
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to a random matching of values for the p inputs used in
a computer run.

M =

2
664

v11 v12 . . . v1p
v21 v22 . . . v2p

...
...

...
...

vk1 vk2 � � � vkp

3
775 (3)

A design matrix for any of the r replicates in this ap-
plication is obtained by randomly and independently per-
muting the values in every column of M .

After making the necessary n computer runs using
replicated LHS, we begin by looking at the components of
X one at a time. Let U denote the component of interest
in X, and denote the k values of U by u1; u2; . . . ; uk.
We label n values of the output as yij to correspond to
the ith value ui, in the jth replicate (sample). The sum
of squares partition corresponding to the input U takes
the form

kX
i=1

rX
j=1

(yij � y)2 = r
kX

i=1

(yi � y)2 +
kX

i=1

rX
j=1

(yij � yi)
2

SST = SSB + SSW

where

yi =
1

r

rX
j=1

yij and y =
1

k

kX
i=1

yi :

The statistic we have chosen to use to assess the
importance of U is R2 = SSB=SST. Although R2 is
bounded between 0 and 1, the attainment of the bounds
is not necessarily a symmetric process. The upper bound
is reached if Y depends only on U . In that case, for any
fixed value of U , say ui, the value of Y will also be
fixed, making SSW equal to 0. As a result, R2 will be 1.
On the other hand, if Y is completely independent of U ,
we do not expect SSB (and, therefore, R2) to be 0. We
now examine this last point in more detail.

In general, the probability distribution of R2 will
be unknown. To gain a little insight, however, suppose
that we arbitrarily partition a random sample of size n
from a normal distribution to form R2. (An arbitrary
partition would correspond to Y independent of U .) The
expected value of R2 is (k � 1)=(n� 1), which goes to
zero with k=n as n increases. Thus, one might consider
(k � 1)=(n� 1) as a working lower bound associated
with a completely unimportant input.

Issues that still need to be addressed include the
apportionment of n between r and k, the extension of the
design and decomposition to more that one component at
a time, and the interpretation of values of R2.

Whether or not one uses R2 or additional methods
to develop the sets X1 and X2, there remains the issue

of evaluating the partition to see how effective it is in
satisfying (1). In fact, iterating between a partition and
validation is what one would do in practice. The next
section discussion validation.
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7.2 Validation of the Partition

Very simply stated, in the validation step we look at X1

and X2 and try to assess how well the partition meets
the objective of isolating the important inputs to X1. We
propose using a very elementary sequence of steps that
begins with a sample design resembling Taguchi’s (1986)
inner array/outer.

1. Select a sample, S2, of the X2s and a
sample, S1, of the X1s.

2. For each sample element x2 2 S2, ob-
tain the sample of Y corresponding to
fx2 
 S1g.

3. Calculate appropriate statistics for each
sample in Step 2, e.g., Y (x2); s

2

y
(x2) and

bFyjx2 .

4. Compare the statistics and decide if the
difference x2 makes is acceptable.

The differences seen in the statistics in Step 4 are due only
to the different values of x2 because the sample values
for X1 are the same in each. Hence, the comparisons
are reasonable.

The reliability of any validation procedure needs to
be evaluated. In this case, S2 may not adequately cover
the domain of X2, particularly as the dimension of X2

increases. Merely increasing the size of S2 may not be
an acceptable solution if the increase in the number of
runs to generate the sample of Y s becomes impossible
to accommodate. Inadequate coverage can be due to two
reasons. First, regions where the conditional distribu-
tion of Y really changes with X2 alone may be missed.
Second, there may be regions where the interaction be-
tween X2 and X1 in the model has a significant impact on
the conditional distribution of Y . Although it has obvi-
ous deficiencies, LHS is an appropriate sampling method
for generating S2 because it provides marginal stratifica-
tion for each input in X2, meaning that the individual
ranges within the components likely have been sampled
adequately. Whether or not interaction between X1 and
X2 will be detected is unknown. As an alternative to
LHS, one might use an orthogonal array as described by
Owen (1991), which provides marginal stratification for
all pairs of input variables.

8 APPLICATION

For an application of these methods, the reader is referred
to McKay, Beckman, Moore and Pickard (1992).
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